Runge-Kutta algorithm

Test of the Runge-Kutta algorithm and comparison with implementation within the deSolve package or the approximation dy -> 0.
The code for Runge-Kutta algorithm has been done by Maxime Jacquemin (ESE, University Paris Sud). It does a little bit better that the deSolve code but very little.





> # from package embryogrowth
> # function lsoda wants a list
> dydt.Gompertz <- function(t, size, parms) {
+   dy.dt <- parms["alpha"]*log(parms["K"]/size)*size
+   list(dy.dt)
+ }

> # Same function but returns a vector
> dydt.Gompertz_2 <- function(t, size, parms) {
+   dy.dt <- parms["alpha"]*log(parms["K"]/size)*size
+   dy.dt
+ }

> # Integration of Gompertz function
> Gompertz <- function(x, y0, K, alpha) {
+   return(K*exp(log(y0/K)*exp(-alpha*x)))
+ }

> # Fonction d'intégration numérique par la méthode de Runge-Kutta
> # par Maxime Jacquemin
> Runge.Kutta <- function(y, times, func, parms = NULL)
+ {
+   n.iter <- length(times)
+   results <- rep(y, n.iter)
+   yn <- y

+   for (i in 2:n.iter)
+   {
+     h <- times[i] - times[i-1]
+     tn <- times[i - 1]
+     k1 <- func(tn, yn, parms)
+     k2 <- func(tn + (h / 2), yn + (h / 2) * k1, parms)
+     k3 <- func(tn + (h / 2), yn + (h / 2) * k2, parms)
+     k4 <- func(tn + h, yn + h * k3, parms)
+     yn <- yn + (h / 6) * (k1 + 2 * k2 + 2 * k3 + k4)
+     results[i] <- yn
+   }
+   
+   return(data.frame(times, results))
+ }

> xv <- seq(from=0, to =500, by=10)
> yv <- Gompertz(xv, y0=1.7, K=50, alpha=0.01)

> plot(x = xv, 
+      y = yv, 
+      type="l", bty="n", xlab="Time", ylab="Value", las=1)
> df <- data.frame(time=xv[1:6], Gompertz=yv[1:6])

> # using the approximation dy/dx when dx -> 0
> index <- 1
> for (dy in c(50, 20, 10, 5, 2, 1, 0.5, 0.1)) {
+ x <- seq(from=0, to =500, by=dy)
+ y <- rep(1.7, length(x))
+ for (i in 2:length(x))
+   y[i] <- y[i-1] + dydt.Gompertz_2(x[i], y[i-1], parms=c(K=50, alpha=0.01))*dy
+ dfi <- as.data.frame(list(y[match(xv[1:6], x)]), col.names=paste0("dy.", as.character(dy)))
+ df <- cbind(df, dfi)
+ lines(x, y, col=index)
+ index <- index + 1
+ # text(501, tail(y, 1)+1, as.character(dy), pos=4, xpd=TRUE)
+ }

> legend("bottomright", legend=as.character(c(50, 20, 10, 5, 2, 1, 0.5, 0.1)), 
+        col=1:8, lty=1, title="dy")






> plot(x = xv, 
+      y = yv, 
+      type="l", bty="n", xlab="Time", ylab="Value", las=1)

> dy <- 10
> x <- seq(from=0, to =500, by=dy)
> rk4 <- Runge.Kutta(func = dydt.Gompertz_2, 
+                    times=x, 
+                    y=1.7, 
+                    parms=c(K=50, alpha=0.01)
+                    )
> dfi <- as.data.frame(
+   list(
+     rk4[
+       match(xv[1:6], x)
+       , 2]
+     ), col.names="rk4")
> df <- cbind(df, dfi)


> system.time(for (i in 1:10000) 
+   Runge.Kutta(func = dydt.Gompertz_2, 
+               times=x, 
+               y=1.7, 
+               parms=c(K=50, alpha=0.01)
+               )
+   )
utilisateur     système      écoulé 
     19.460       0.197      19.766 
> points(rk4[, 1], rk4[, 2], pch=1)


> library(deSolve)
> dy <- 10
> x <- seq(from=0, to =500, by=dy)
> rk4_desolve <- lsoda(func = dydt.Gompertz, 
+                      times=x, 
+                      y=1.7, 
+                      parms=c(K=50, alpha=0.01))
> dfi <- as.data.frame(list(rk4_desolve[match(xv[1:6], x), 2]), col.names="rk4.deSolve")
> df <- cbind(df, dfi)

> system.time(for (i in 1:10000) 
+   lsoda(func = dydt.Gompertz, 
+         times=x, 
+         y=1.7,
+         parms=c(K=50, alpha=0.01)))
utilisateur     système      écoulé 
     19.584       0.187      19.873 
> points(x = rk4_desolve[, 1], rk4_desolve[, 2], pch=4)

> legend("bottomright", 
+        legend=c("Gompertz", 
+                 "Runge-Kutta by M. Jacquemin", 
+                 "lsoda from deSolve package"), 
+        lty=c(1, 0, 0), 
+        pch=c(NA, 1, 4))

> df
  time Gompertz    dy.50    dy.20    dy.10     dy.5     dy.2     dy.1   dy.0.5   dy.0.1
1    0 1.700000 1.700000 1.700000 1.700000 1.700000 1.700000 1.700000 1.700000 1.700000
2   10 2.345293       NA       NA 2.274837 2.307908 2.329776 2.337436 2.341340 2.344499
3   20 3.137954       NA 2.849674 2.977788 3.053283 3.102904 3.120225 3.129038 3.136163
4   30 4.083785       NA       NA 3.817775 3.943819 4.026034 4.054608 4.069120 4.080839
5   40 5.183115       NA 4.482434 4.799842 4.982534 5.100656 5.141509 5.162217 5.178921
6   50 6.430829 4.574186       NA 5.924656 6.167470 6.322978 6.376483 6.403551 6.425356
       rk4 rk4.deSolve
1 1.700000    1.700000
2 2.345268    2.345291
3 3.137904    3.137951
4 4.083711    4.083781
5 5.183020    5.183114
6 6.430713    6.430834


Commentaires

Posts les plus consultés de ce blog

Standard error from Hessian Matrix... what can be done when problem occurs

Install treemix in ubuntu 20.04

stepAIC from package MASS with AICc