Rejection rate in Metropolis-Hastings algorithm

During the Metropolis-Hastings algorithm run, the rejection rate should be 0.234.
Bédard M. (2008) Optimal acceptance rates for metropolis algorithms: Moving beyond 0.234. Stochastic Processes and Their Applications, 118(12), 2198-2222.

Such a value can be achieved by change of SD proposition parameter for each prior. However it can can tedious to estimate the correct value if each run takes a long time to finish.
However, to get correct rejection rate needs much less iterations than to get correct SD values. Here I will show that with as few as 1000 iterations (10^3),  it is possible to estimate rejection rate with a 95% confidence interval at ±0.04.

library(HelpersMG)

# 30 random numbers from Gaussian distribution 
x <- rnorm(30, 10, 2)
# Likelihood function
dnormx <- function(data, x) {
  data <- unlist(data)
  return(-sum(dnorm(data, mean=x['mean'], sd=x['sd'], log=TRUE)))
}

# Where all the results will be stored
RR <- list()

for (iter in c(100, 1000, 5000, 10000)) {
  print(iter)
  df <- data.frame(mean=as.numeric(), sd=as.numeric())
  for (i in 1:10) {
    mcmc_run <- MHalgoGen(n.iter=iter, parameters=parameters_mcmc, data=x, 
                          likelihood=dnormx, n.chains=1, n.adapt=100, thin=1, trace=1)
    df <- rbind(df, t(as.data.frame(rejectionRate(as.mcmc(mcmc_run)))))
  }
  
  RR <- c(RR, list(df))
  
}

result <- sapply(RR, function(X) apply(X, MARGIN=2, FUN=sd))

plot(log10(c(100, 1000, 5000, 10000)), result["mean", ], bty="n", type="b", las=1, 
     xlab="Log iterationss", ylab="SD rejection rate", ylim=c(0, 0.1))
plot_add(log10(c(100, 1000, 5000, 10000)), result["sd", ], type="b", col="red")



Commentaires

Posts les plus consultés de ce blog

Standard error from Hessian Matrix... what can be done when problem occurs

Install treemix in ubuntu 20.04

stepAIC from package MASS with AICc