Periodic GLM

# generate data
jo <- 1:800
trans_trigo <- 10+sin((jo/365.25)*2*pi)*1+ cos((jo/365.25)*2*pi)*5
obs <- rnorm(n=800, mean=trans_trigo, sd=2)

# plot the data
plot(jo, obs, bty="n", xlim=c(1,800), ylim=c(0,20))
par(new=TRUE)
plot(jo, trans_trigo, bty="n", xlim=c(1,800), ylim=c(0,20), xlab="", ylab="",
     axes=FALSE, col="violet", type="l", lwd=2)

# group is per month observation
mydat <- data.frame(obs=obs, jour=jo, jour2=jo*jo, group=round(jo/27))

# glm with ordinal day as linear factor
mod <- glm(obs ~ jour, data=mydat, family=gaussian)
summary(mod)
newdata <- data.frame(jour=1:800)
preddf2 <- predict(mod, type="response", newdata=newdata, se.fit=FALSE)
par(new=TRUE)
plot(jo, preddf2, bty="n", xlim=c(1,800),  ylim=c(0,20), xlab="", ylab="", axes=FALSE, col="red", type="l")

# glm with ordinal day as second degree polynom
mod3 <- glm(obs ~ jour+jour2, data=mydat, family=gaussian)
summary(mod3)
newdata <- data.frame(jour=1:800, jour2=(1:800)^2)
preddf2 <- predict(mod3, type="response", newdata=newdata, se.fit=FALSE)
par(new=TRUE)
plot(jo, preddf2, bty="n", xlim=c(1,800),  ylim=c(0,20), xlab="", ylab="", axes=FALSE, col="green", type="l")

# glm with ordinal day transformed as period factor
mod2 <- glm(obs ~ sin((jour/365.25)*2*pi)+ cos((jour/365.25)*2*pi), data=mydat, family=gaussian)
summary(mod2)
newdata <- data.frame(jour=1:800)
preddf2 <- predict(mod2, type="response", newdata=newdata, se.fit=FALSE)
par(new=TRUE)
plot(jo, preddf2, bty="n", xlim=c(1,800),  ylim=c(0,20), xlab="", ylab="", axes=FALSE, col="blue", type="l")

# Alternative 
mydat <- cbind(mydat, sinjour=sin((mydat$jour/365.25)*2*pi))
mydat <- cbind(mydat, cosjour=cos((mydat$jour/365.25)*2*pi))

mod3 <- glm(obs ~ sinjour + cosjour, data=mydat, family=gaussian)
summary(mod3)
newdata <- data.frame(sinjour=sin((1:800/365.25)*2*pi), cosjour=cos((1:800/365.25)*2*pi))
preddf3 <- predict(mod3, type="response", newdata=newdata, se.fit=FALSE)
par(new=TRUE)
plot(jo, preddf3, bty="n", xlim=c(1,800),  ylim=c(0,20), xlab="", ylab="", axes=FALSE, col="black", type="l")


# Same with glmm
library("MASS")
mod4 <- glmmPQL(obs ~ sin((jour/365.25)*2*3.141593)+ cos((jour/365.25)*2*3.141593), random= ~ 1 | group, data=mydat, family=gaussian)
summary(mod4)
newdata <- data.frame(jour=1:800, group=round(jo/27))
preddf2 <- predict(mod4, type="response", newdata=newdata, se.fit=FALSE)
par(new=TRUE)
plot(jo, preddf2, bty="n", xlim=c(1,800),  ylim=c(0,20), xlab="", ylab="", axes=FALSE, col="yellow", type="l")

Commentaires

Posts les plus consultés de ce blog

Standard error from Hessian Matrix... what can be done when problem occurs

Install treemix in ubuntu 20.04

stepAIC from package MASS with AICc