Multinomial probabilities

If you need fit a probability using optim(), it is more secure to fit an inverse logit value and use a logit transformation after to ensure that the values stay always between 0 and 1:
L <- c(1.2)
p <- 1/(1+exp(L))

And then the probabilities of the two events are p and 1-p.

However it is more difficult in the case of multinomial distribution because the sum of the probabilities must be 1. Here is the correct way to do. For N events, you need N-1 parameters:
L <- c(10, -1, 3, 7, 0)
p <- 1/(1+exp(L))
p
[1] 4.539787e-05 7.310586e-01 4.742587e-02 9.110512e-04 5.000000e-01


The trick is to transform these probabilities into conditional probabilities:

p.multinomial <- function(p) c(p, 1)*c(1, sapply(seq_along(p), function(i) prod(1-p[1:i])))

p.multinomial(p)
[1] 4.539787e-05 7.310254e-01 1.275420e-02 2.333885e-04 1.279708e-01 1.279708e-01

sum(c(p, 1)*c(1, sapply(seq_along(p), function(i) prod(1-p[1:i]))))
[1] 1


To do the reverse:

inv.p.multinomial <- function(x) {
  p <- x[1]
  for (i in 2:(length(x)-1))
    p <- c(p, x[i]/(prod(1-p[1:(i-1)])))
  return(p)
}

x <- p.multinomial(p)
inv.p.multinomial(x)
[1] 4.539787e-05 7.310586e-01 4.742587e-02 9.110512e-04 5.000000e-01

Commentaires

Posts les plus consultés de ce blog

Standard error from Hessian Matrix... what can be done when problem occurs

Install treemix in ubuntu 20.04

stepAIC from package MASS with AICc