Comparison between packages RnetCDF, ncdf4 and ncdf

Let use the same nc file obtained from NOAA (http://www.esrl.noaa.gov/psd/data/gridded/data.noaa.oisst.v2.highres.html) be used.

Here I show the 3 ways to get annual data depending on the package used.

In conclusion, RnetCDF does not scale data using scale_factor and add_offset automatically. Take care.
utcal.nc from package RnetCDF is very useful.

dest <- "sst.day.mean.2014.v2.nc"

For all the package, I will use the same coordinates: lat=35, lon=28

# Note that the function ind_long_lat can be used data from any of these packages
library(RNetCDF)
dat.RNetCDF <- open.nc(dest)
lat=35
lon=28
# it will be used for all data
library(phenology)
indice <- ind_long_lat(ncdf=dat.RNetCDF, long=lon, lat=lat)

Packages RnetCDF
# take care, it does not scale automatically the data
point_SST.RNetCDF_wrong <- var.get.nc(ncfile=dat.RNetCDF, variable="sst", 
                                start=c(indice ,1), count=c(1, 1, 1))
# correct method
point_SST.RNetCDF_corr <- var.get.nc(ncfile=dat.RNetCDF, variable="sst", 
                                     start=c(indice ,1), count=c(1, 1, 1))*
  att.get.nc(ncfile=dat.RNetCDF, variable="sst", attribute="scale_factor")+
  att.get.nc(ncfile=dat.RNetCDF, variable="sst", attribute="add_offset")
# Get the time
label.time <- dim.inq.nc(dat.RNetCDF, 0)$name
date.char <- utcal.nc(att.get.nc(dat.RNetCDF, label.time, "units"), 
                            var.get.nc(dat.RNetCDF, label.time, 
                                       start=1, 
                                       count=dim.inq.nc(dat.RNetCDF, 0)$length), 
                            type="s")
date.POSIXlt <- strptime(date.char, format="%Y-%m-%d %H:%M:%S", tz="UTC")

Package ncdf4
library(ncdf4)
dat.ncdf4 <- nc_open(dest)
point_SST.ncdf4 <- ncvar_get(dat.ncdf4, varid="sst", start=c(indice ,1),count=c(1, 1, 1))
# Get the time
# We must check what is the number of time element using names(dat.ncdf$dim); here it is the first one
label.time <- names(dat.ncdf4$dim)[1]
library(RNetCDF)
date.char <- utcal.nc(dat.ncdf4$dim[[label.time]]$units, dat.ncdf4$dim[[label.time]]$vals, type="s")
date.POSIXlt <- strptime(date.char, format="%Y-%m-%d %H:%M:%S", tz="UTC")

Package ncdf
library(ncdf)
dat.ncdf <- open.ncdf(dest)
point_SST.ncdf <- get.var.ncdf(dat.ncdf, varid="sst", start=c(indice ,1),count=c(1, 1, 1))
# Get the time
# We must check what is the number of time element using names(dat.ncdf$dim); here it is the first one
label.time <- names(dat.ncdf$dim)[1]
library(RNetCDF)
date.char <- utcal.nc(dat.ncdf$dim[[label.time]]$units, dat.ncdf$dim[[label.time]]$vals, type="s")
date.POSIXlt <- strptime(date.char, format="%Y-%m-%d %H:%M:%S", tz="UTC")

# Alternative without utcal() function from RNetCDF package:
ref.date <- strptime(gsub("days since ", "", dat.ncdf$dim[[label.time]]$units), format="%Y-%m-%d %H:%M:%S", tz="UTC")
if (substr(dat.ncdf$dim[[label.time]]$units, 1, 4)=="days") 
  {date.POSIXlt <- ref.date+dat.ncdf$dim[[label.time]]$vals*24*3600} else 
    {if (substr(dat.ncdf$dim[[label.time]]$units, 1, 5)=="hours") 
  {date.POSIXlt <- ref.date+dat.ncdf$dim[[label.time]]$vals*3600} else 
  {date.POSIXlt <- rep(NA, length(dat.ncdf$dim[[label.time]]$vals))}}


Commentaires

Posts les plus consultés de ce blog

Standard error from Hessian Matrix... what can be done when problem occurs

Install treemix in ubuntu 20.04

stepAIC from package MASS with AICc