Prior for proportion

The prior for proportion should be chosen within Beta distribution. 
Beta distribution in Wikipedia
Beta distribution has two parameters, alpha and beta (alpha>0 and beta>0) and it used a parameter 0≤x≤1. x can be a proportion. For such a reason, Beta distribution is perfect to be used as a prior for proportion.

Look at the shape of beta:
colors = c("red","blue","green","orange","purple", "black")
grid = seq(0,1,.01)


alpha = c(.5,5,1,2,2, 1)
beta = c(.5,1,3,2,5, 1)

plot(grid,grid,type="n",xlim=c(0,1),ylim=c(0,4),xlab="",ylab="Prior Density",
     main="Prior Distributions", las=1)
for(i in 1:length(alpha)){
  prior = dbeta(grid,alpha[i],beta[i])
  lines(grid,prior,col=colors[i],lwd=2)
}

legend("topleft", legend=c("Beta(0.5,0.5)", "Beta(5,1)", "Beta(1,3)", "Beta(2,2)", "Beta(2,5)", "Beta(1,1)"),
       lwd=rep(2,6), col=colors, bty="n", ncol=2, cex=0.8)

Now let see the influence of the prior on the posterior:


n = 10
N = 10
prob = .2

x = rbinom(n,N,prob)

for(i in 1:length(alpha)){
  # dev.new()
  plot(grid,grid,type="n",xlim=c(0,1),ylim=c(0,10),
       xlab="",ylab="Density",xaxs="i",yaxs="i",
       main="Prior and Posterior Distribution")
 
  alpha.star = alpha[i] + sum(x)
  beta.star = beta[i] + n*N - sum(x)
  prior = dbeta(grid,alpha[i],beta[i])
  post = dbeta(grid,alpha.star,beta.star)
 
  lines(grid,post,lwd=2)
  lines(grid,prior,col=colors[i],lwd=2)
  legend("topright",c("Prior","Posterior"),col=c(colors[i],"black"),lwd=2)
}

Commentaires

Posts les plus consultés de ce blog

Standard error from Hessian Matrix... what can be done when problem occurs

Install treemix in ubuntu 20.04

stepAIC from package MASS with AICc