Example of bootstrap to estimate se of a set of data... just for fun

N <- 1000
A <- rnorm(N)
sd(A)/sqrt(N)
# Vraie valeur: 
1/sqrt(N)

t <- NULL
for (rep in rep(c(100, 200, 300, 400, 500, 1000), 10)) {
  print(rep)
  s <- NULL
  for (i in 1:10000) {
    tirage <- sample(A, size=rep, replace = TRUE)
    s <- c(s, mean(tirage))
  }
  
  t <- c(t, sd(s))
}
dta <- data.frame(group=rep(c(100, 200, 300, 400, 500, 1000), 10), 
                  mean=t)
boxplot(mean ~ group, data=dta, las=1, ylab="SE", xlab="Number of bootstraps", ylim=c(0, 0.15))
segments(x0=1, x1=7, y0=1/sqrt(N), y1=1/sqrt(N), col="red", lty=3, lwd=2)


In red, the true SE. The SE estimation by bootstrap is upper biased.

Commentaires

Posts les plus consultés de ce blog

Standard error from Hessian Matrix... what can be done when problem occurs

Install treemix in ubuntu 20.04

stepAIC from package MASS with AICc