What are the consequences of replacing missing data with median?

The conclusion is that it artificially reduced the variability of the correlation coefficient. It is bad practice. But it is much better than doing nothing !


cor.original <- NULL
cor.na <- NULL
cor.median <- NULL

for (i in 1:10000) {
  A <- rnorm(100, mean=100, sd=20)
  B <- rnorm(100, mean=100, sd=20)
  Bprime <- ifelse(sample(c(0,1), 100, replace = TRUE), B, NA)
  Bter <- ifelse(is.na(Bprime), median(B, na.rm = TRUE), Bprime)
  cor.original <- c(cor.original, cor(x=A, y=B, method = "spearman"))
  cor.na <- c(cor.na, cor(x=A, y=Bprime, method = "spearman", use="complete.obs"))
  cor.median <- c(cor.median, cor(x=A, y=Bter, method = "spearman", use="complete.obs"))
}
layout(1:3)
hist(cor.original, xlim=c(-0.6, 0.6), breaks=seq(from=-0.6, to=0.6, by=0.05))
hist(cor.na, xlim=c(-0.6, 0.6), breaks=seq(from=-0.6, to=0.6, by=0.05))
hist(cor.median, xlim=c(-0.6, 0.6), breaks=seq(from=-0.6, to=0.6, by=0.05))
quantile(cor.original)
quantile(cor.na)
quantile(cor.median)

Commentaires

Posts les plus consultés de ce blog

Standard error from Hessian Matrix... what can be done when problem occurs

Install treemix in ubuntu 20.04

stepAIC from package MASS with AICc