Confidence interval for orthogonal regression

I have not found a method to estimate confidence interval of orthogonal regression. Then I build one using bootstrap.

OrthogonalRegression <- function(x, y) {
  library("pracma")
  xnew <- seq(from=min(x), to=max(x), length.out = 100)
  replicate <- 1000
  m <- matrix(data=NA, nrow=replicate, ncol=length(xnew))
  c <- NULL
  d <- NULL
  odrx <- odregress(x, y)
  for (r in 1:replicate) {
    s <- sample(1:length(x), length(x), replace = TRUE)
    odr <- odregress(x[s], y[s])
    cc <- odr$coeff
    c <- c(c, cc[1])
    d <- c(d, cc[2])
    # Prediction
    ynew <- cbind(xnew, 1) %*% cc
    m[r, ] <- ynew
  }
  q <- apply(m, MARGIN=2, FUN=quantile, probs=c(0.025, 0.5, 0.975))
  q <- rbind(q, x=xnew)
  qb <- quantile(c, probs=c(0.025, 0.5, 0.975))
  qa <- quantile(d, probs=c(0.025, 0.5, 0.975))
 
  return(list(model=odrx,
              values=q,
              intercept=qa,
              slope=qb))
}


x <- runif(100, min=10, max=20)
y <- runif(100, min=5, max=15)+x

or <- OrthogonalRegression(x, y)

plot(x, y, bty="n", las=1)
par(xpd=FALSE)
lines(or$values["x", ], or$values["50%", ])
lines(or$values["x", ], or$values["2.5%", ], lty=2)
lines(or$values["x", ], or$values["97.5%", ], lty=2)

abline(a=or$intercept[1], b=or$slope[3], col="red")
abline(a=or$intercept[3], b=or$slope[1], col="red")

Commentaires

Posts les plus consultés de ce blog

Standard error from Hessian Matrix... what can be done when problem occurs

Install treemix in ubuntu 20.04

stepAIC from package MASS with AICc