Gamma distribution parameters from mean and variance of data distribution

set.seed(31234)
x <- rgamma(100, shape=2.0, rate=11.0)

hist(x)
#print(x)

shape <- 2.0
rate <- 11.0
scale <- 1/rate

m <- mean(x)
print(shape * scale)
print(shape * 1 / rate)
v <- var(x)
print(shape * scale^2)
print(shape * (1 / rate) ^2)

print(m)
print(v)

scale <- v/m
shape <- m*m/v
rate <- 1/scale

print(shape)
print(rate)


library(fitdistrplus)
fitdist(data=x, distr="gamma", method = "mle")
fitdist(data=x, distr="gamma", method = "mme")

Note that the gamma distribution cannot be fitted when standard deviation (and then variance) is null:
scale <- v/m # is 0
shape <- m*m/v # is +Inf
rate <- 1/scale # is +Inf

And

> x <- rep(100, 1000)
> library(fitdistrplus)
> fitdist(data=x, distr="gamma", method = "mle")
<simpleError in optim(par = vstart, fn = fnobj, fix.arg = fix.arg, obs = data,     gr = gradient, ddistnam = ddistname, hessian = TRUE, method = meth,     lower = lower, upper = upper, ...): valeur non-finie fournie par optim>
Error in fitdist(data = x, distr = "gamma", method = "mle") :
  the function mle failed to estimate the parameters,
                with the error code 100
> fitdist(data=x, distr="gamma", method = "mme")
Fitting of the distribution ' gamma ' by matching moments
Parameters:
      estimate
shape      Inf
rate       Inf
Warning message:
In dgamma(c(100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100,  :
  production de NaN

> x <- c(rep(100, 1000), 101)
> fitdist(data=x, distr="gamma", method = "mme")
Fitting of the distribution ' gamma ' by matching moments
Parameters:
        estimate
shape 10020210.2
rate    100201.1


Commentaires

Posts les plus consultés de ce blog

Standard error from Hessian Matrix... what can be done when problem occurs

Install treemix in ubuntu 20.04

stepAIC from package MASS with AICc