Forking or not for parallel computing

In linux, forking is available when parallel computing is done but not in Windows. But what is the difference ?

Let do an exemple (code is below):



When the durations of the tasks are unordered, both algorithms are performing identically. However when task durations are ordered, forking is doing much better.


library(parallel)
l <- (1:32)/10/16.5
sum(l)

t0 <- system.time(lapply(l, FUN=function(x) {Sys.sleep(x)}))["elapsed"]

cl <- makeCluster(detectCores())
out1 <- NULL; for (i in 1:200) out1 <- c(out1, system.time(parLapplyLB(cl = cl, X = l, fun = function(x) {Sys.sleep(x)}))["elapsed"])
stopCluster(cl)

out2 <- NULL; for (i in 1:200) out2 <- c(out2, system.time(mclapply(l, mc.cores =detectCores(), FUN=function(x) {Sys.sleep(x)}))["elapsed"])


cl <- makeCluster(detectCores())
out3 <- NULL; for (i in 1:200) out3 <- c(out3, system.time(parLapplyLB(cl = cl, X = l[sample(32)], fun = function(x) {Sys.sleep(x)}))["elapsed"])
stopCluster(cl)

out4 <- NULL; for (i in 1:200) out4 <- c(out4, system.time(mclapply(l[sample(32)], mc.cores =detectCores(), FUN=function(x) {Sys.sleep(x)}))["elapsed"])

layout(mat = matrix(1:4, nrow = 2))

hist(out1, col="blue", breaks = seq(from=0.8, to=1.3, by=0.01), xlim=c(0.8, 1.3), ylim=c(0, 60), 
     main="Without forking, ordered")
text(x = 1.15, y=50, labels = format(mean(out1), digits = 5), pos=4)
hist(out2, col="blue", breaks = seq(from=0.8, to=1.3, by=0.01), xlim=c(0.8, 1.3), ylim=c(0, 60), 
     main="With forking, ordered")
text(x = 1.15, y=50, labels = format(mean(out2), digits = 5), pos=4)
hist(out3, col="blue", breaks = seq(from=0.8, to=1.3, by=0.01), xlim=c(0.8, 1.3), ylim=c(0, 60), 
     main="Without forking, unordered")
text(x = 1.15, y=50, labels = format(mean(out3), digits = 5), pos=4)
hist(out4, col="blue", breaks = seq(from=0.8, to=1.3, by=0.01), xlim=c(0.8, 1.3), ylim=c(0, 60), 
     main="With forking, unordered")
text(x = 1.15, y=50, labels = format(mean(out4), digits = 5), pos=4)






Commentaires

Posts les plus consultés de ce blog

Standard error from Hessian Matrix... what can be done when problem occurs

Install treemix in ubuntu 20.04

stepAIC from package MASS with AICc