Partial coefficient of correlation

Let have 3 variables, x, y and a:
x <- rnorm(100, mean=10, sd=2)
y <- x+rnorm(100, mean=20, sd=5)
a <- rnorm(100, mean=10, sd=2)
df <- data.frame(x=x, y=y, a=a)

The partial coefficient correlation between x and y relative to a is the correlation coefficient of the residuals of the linear regression of x and y over a:
pcor <- function(df) {
  ax <- lm(x ~ a, data=df)
  ay <- lm(y ~ a, data=df)
  
  rx <- residuals(ax)
  ry <- residuals(ay)
  
  return(cor(rx, ry))
}

pcor(df)

Let confirm with the package ppcor:

library("ppcor")
ppcor:::pcor(df)$estimate[2, 1]

Note that I use ppcor:::pcor() to be sure that the version of pcor in the package is used.

It works: we obtained the same result.

It should be noted that ppcor:::pcor() is more rapid than my version of pcor() even if it estimate 3 partial correlations and me only one !

> system.time(
+   for (i in 1:10000) ppcor:::pcor(df)$estimate[2, 1]
+ )
utilisateur     système      écoulé 
      2.629       0.097       2.777 
> system.time(
+   for (i in 1:10000) pcor(df)
+ )
utilisateur     système      écoulé 
     18.385       0.733      19.403 

Commentaires

Posts les plus consultés de ce blog

Standard error from Hessian Matrix... what can be done when problem occurs

Install treemix in ubuntu 20.04

stepAIC from package MASS with AICc