Bivariate confidence interval as a bubble (irregular ellipse)

This function will be useful if you want show the confidence interval of bivariate plots as a bubble (an irregular ellipse).
Note that this function has been introduced and enhanced in my package HelpersMG available in CRAN

ellipse <- function(center.x = 0, center.y = 0,
                        radius.x = 1, radius.y = 1,
                        radius.x.lower=NULL, radius.x.upper=NULL,
                        radius.y.lower=NULL, radius.y.upper=NULL, col=rgb(0, 0, 0, 0.1)) {

  if (is.null(radius.x.lower))  radius.x.lower <- radius.x
  if (is.null(radius.y.lower))  radius.y.lower <- radius.y
  if (is.null(radius.x.upper))  radius.x.upper <- radius.x
  if (is.null(radius.y.upper))  radius.y.upper <- radius.y

  for (k in seq_along(center.x)) {

  theta <- seq(0, pi / 2, length=100)
  x <- center.x[k] + radius.x.upper[k] * cos(theta)
  y <- center.y[k] + radius.y.upper[k] * sin(theta)

  theta <- seq(pi / 2, pi, length=100)
  x <- c(x, center.x[k] + radius.x.lower[k] * cos(theta))
  y <- c(y, center.y[k] + radius.y.upper[k] * sin(theta))

  theta <- seq(pi, 3/2*pi, length=100)
  x <- c(x, center.x[k] + radius.x.lower[k] * cos(theta))
  y <- c(y, center.y[k] + radius.y.lower[k] * sin(theta))

  theta <- seq(3/2*pi, 2 * pi, length=100)
  x <- c(x, center.x[k] + radius.x.upper[k] * cos(theta))
  y <- c(y, center.y[k] + radius.y.lower[k] * sin(theta))


  polygon(x, y, border=NA, col=col)
  }
}




Here are some examples

ellipse(center.x = c(0.2, 0.3, 0.25), center.y = c(0.7, 0.6, 0.55), radius.x = c(0.1, 0.1, 0.1), radius.y = c(0.15, 0.2, 0.5))

ellipse(center.x = 0.5, center.y = 0.5, radius.x.lower = 0.1, radius.x.upper = 0.3, radius.y = 0.2)
ellipse(center.x = 0.6, center.y = 0.3, radius.x.lower = 0.1, radius.x.upper = 0.3, radius.y.lower = 0.2, radius.y.upper = 0.4)


males <- c(10, 25, 3, 4)
N <- c(12, 52, 17, 10)


males2 <- c(12, 20, 3, 6)
N2 <- c(15, 50, 20, 12)

bc <- HelpersMG::.BinomialConfidence(x=males, n=N)
bc2 <- HelpersMG::.BinomialConfidence(x=males2, n=N2)

plot(0:1, 0:1, xlim=c(0, 1), ylim=c(0,1), lty=2, type="l", las=1, bty="n")

ellipse(center.x = bc[, "PointEst"], center.y = bc2[, "PointEst"],
            radius.x.lower = bc[, "PointEst"]-bc[, "Lower"],
            radius.x.upper = bc[, "Upper"]-bc[, "PointEst"],
            radius.y.lower = bc2[, "PointEst"]-bc2[, "Lower"],
            radius.y.upper = bc2[, "Upper"]-bc2[, "PointEst"])

Commentaires

Posts les plus consultés de ce blog

Standard error from Hessian Matrix... what can be done when problem occurs

Install treemix in ubuntu 20.04

stepAIC from package MASS with AICc