Different ways to show confidence interval as an ellipse or a minimum convex polygon, with gradient of colors

Let calculate of sample of 100000 points defining credibility interval from MCMC with Metropolis-Hasting algorithm based on a logistic model:

t <- c(25, 25, 26, 28, 30, 32, 33, 33, 34)
n <- c(10, 12, 13, 15, 10, 16, 10, 12, 15)
x <- c(10, 11, 12, 13, 5, 3, 1, 0, 0)

S <- -0.5
P <- 29

Lbinom <- function(data, x) -sum(dbinom(x=data$x, size=data$size, prob=1/(1+exp((1/x["S"])*(x["P"]-data$t))), log=TRUE))

Lbinom(data=list(x=x, size=n, t=t), x=c(P=P, S=S))

library("HelpersMG")

parameters_mcmc <- data.frame(Density=c('dunif', 'dunif'), 
            Prior1=c(25, -2), Prior2=c(32, 2), SDProp=c(0.35, 0.2), 
            Min=c(25, -2), Max=c(32, 2), Init=c(29, -0.5), stringsAsFactors = FALSE, 
            row.names=c('P', 'S'))

mcmc_run <- MHalgoGen(n.iter=50000, parameters=parameters_mcmc, data=list(x=x, size=n, t=t), 
                      likelihood=Lbinom, n.chains=1, n.adapt=100, thin=1, trace=1, adaptive = TRUE)

plot(mcmc_run, parameters = 1, xlim=c(20, 35))


plot(mcmc_run, parameters = 2, xlim=c(-2.5, 2.5))



raftery.diag(as.mcmc(mcmc_run))
heidel.diag(as.mcmc(mcmc_run))
1-rejectionRate(as.mcmc(mcmc_run))

xMCMC <- as.numeric(mcmc_run$resultMCMC[[1]][, "P"])
yMCMC <- as.numeric(mcmc_run$resultMCMC[[1]][, "S"])

Let draw the results using different methods.

First draw simply all the points:

plot(x=xMCMC, 
     y=yMCMC, 
     pch=".", col="grey", bty="n", las=1, xlab="P", ylab="S", 
     xlim=c(25, 33), ylim=c(-2, 0), cex=0.1)



Now add a 95% ellipse:


library("car")

ellipse95 <- dataEllipse(x=xMCMC, 
                                       y=yMCMC, 
                                       levels=c(0.95), 
                                       draw=FALSE)
polygon(ellipse95[, 1], ellipse95[, 2], border = NA, col=rgb(0, 0.5, 0, 0.5))


Now a 99% ellipse with gradient color:

plot(x=xMCMC, 
     y=yMCMC, 
     pch=".", col=rgb(red = 0, green = 0, blue=0, alpha=0.01), 
     bty="n", las=1, xlab="P", ylab="S", 
     xlim=c(25, 33), ylim=c(-2, 0), type="p")


n.levels <- 128
col.levels <- grey.colors(n.levels)
ellipse99gradient <- dataEllipse(x=xMCMC, 
                                 y=yMCMC, 
                                       levels=seq(from=0.99, to=0.01, length=n.levels), 
                                       draw=FALSE)

for (ellip in 1:n.levels) {
  polygon(ellipse99gradient[[ellip]][, 1], ellipse99gradient[[ellip]][, 2], col=rev(col.levels)[ellip], border = NA)
}

points(x=xMCMC, 
        y=yMCMC, 
        pch=".", col=rgb(red = 1, green = 0, blue=0, alpha=0.02))



Now do a Minimum Convex Polygon that encompasses all the points:

plot(x=xMCMC, 
     y=yMCMC, 
     pch=".", col=rgb(red = 0, green = 0, blue=0, alpha=0.01), 
     bty="n", las=1, xlab="P", ylab="S", 
     xlim=c(25, 33), ylim=c(-2, 0), type="p")


library("spatstat")
mcp_bypnts <- convexhull.xy(x=xMCMC, 
                            y=yMCMC)
polygon(x=mcp_bypnts$bdry[[1]]$x  , y=mcp_bypnts$bdry[[1]]$y, border=NA, col=rgb(0.5, 0, 0, 0.2))


Let the Minimum Convex Polygon encompasses only 95% of the points:

mx0 <- mean(xMCMC)
my0 <- mean(yMCMC)

minx <- min(xMCMC); maxx <- max(xMCMC)
sx <- (xMCMC-mx0)/(maxx-minx)
miny <- min(yMCMC); maxy <- max(yMCMC)
sy <- (yMCMC-my0)/(maxy-miny)

mx <- mean(sx)
my <- mean(sy)

dst <- sqrt((sx-mx)^2+(sy-my)^2)

ldst <- quantile(dst, 0.95)

mcp_bypnts <- convexhull.xy(x=xMCMC[dst<=ldst], 
                            y=yMCMC[dst<=ldst])

polygon(x=mcp_bypnts$bdry[[1]]$x  , y=mcp_bypnts$bdry[[1]]$y, border=NA, col=rgb(0.5, 0, 0, 0.2))
Note that the shape converge to a circle (in standardized scale, then an oval in non standardized scale).

Let converge to a square (in standardized scale, then an parallelpiped in non standardized scale).

dst <- abs(sx-mx)+abs(sy-my)

ldst <- quantile(dst, 0.95)

mcp_bypnts <- convexhull.xy(x=xMCMC[dst<=ldst], 
                            y=yMCMC[dst<=ldst])

polygon(x=mcp_bypnts$bdry[[1]]$x  , y=mcp_bypnts$bdry[[1]]$y, border=NA, col=rgb(0, 0, 0.5, 0.2))




Now do a gradient color for the Minimum Convex Polygon:

plot(x=xMCMC, 
     y=yMCMC, 
     pch=".", col=rgb(red = 0, green = 0, blue=0, alpha=0.01), 
     bty="n", las=1, xlab="P", ylab="S", 
     xlim=c(25, 33), ylim=c(-2, 0), type="p")


n.levels <- 128
col.levels <- rev(grey.colors(n.levels))

sx <- xMCMC
sy <- yMCMC

mx0 <- mean(xMCMC)
my0 <- mean(yMCMC)

minx <- min(xMCMC); maxx <- max(xMCMC)
sx <- (xMCMC-mx0)/(maxx-minx)
miny <- min(yMCMC); maxy <- max(yMCMC)
sy <- (yMCMC-my0)/(maxy-miny)

mx <- mean(sx)
my <- mean(sy)

# This formula implies that it is a circle because it is applied on
# standardized values
dst <- sqrt((sx-mx)^2+(sy-my)^2)
probs <- seq(from=1, to=0.01, length=n.levels)

for (k in 1:n.levels) {
  # print(k)
  ellip <- probs[k]
  
  ldst <- quantile(dst, ellip)
  
  mcp_bypnts <- convexhull.xy(x=xMCMC[dst<=ldst], 
                              y=yMCMC[dst<=ldst])
  
  polygon(x=mcp_bypnts$bdry[[1]]$x  , y=mcp_bypnts$bdry[[1]]$y, border=NA, col=col.levels[k])
}




Commentaires

Posts les plus consultés de ce blog

Standard error from Hessian Matrix... what can be done when problem occurs

Install treemix in ubuntu 20.04

stepAIC from package MASS with AICc