Articles

Affichage des articles du février, 2020

Parallelize python code with R

Let this python code to be parallelized: import time def basic_func(x):     if x == 0:         return 'zero'     elif x%2 == 0:         return 'even'     else:         return 'odd'      starttime = time.time() for i in range(0,10):     y = i*i     # time.sleep(2)     print('{} squared results in a/an {} number'.format(i, basic_func(y)))      print('That took {} seconds'.format(time.time() - starttime)) Do this in R: library(microbenchmark) library(parallel) microbenchmark({out1 <- parallel::mclapply(1:1000, FUN=function(x) {system("python3 essai.py", intern=TRUE)}, mc.cores = detectCores())}, times = 1L) microbenchmark({out1 <- lapply(1:1000, FUN=function(x) {system("python3 essai.py", intern=TRUE)})}, times = 1L)